1 Concentration Inequalities

Theorem 1.1. (Markov’ inequality, [Dur96]) Let \(X \) be a nonnegative random variable, then we have
\[
P[X \geq tE[X]] \leq \frac{1}{t}
\]
for any \(t > 0 \).

Proof. By definition, we have
\[
E[X] = \int_0^\infty xp(x)dx = \int_0^{tE[X]} xp(x)dx + \int_{tE[X]}^\infty xp(x)dx
\]
\[
\geq \int_0^{tE[X]} 0p(x)dx + \int_{tE[X]}^\infty tE[X]p(x)dx
\]
\[
= tE[X] \int_{tE[X]}^\infty p(x)dx := tE[X]P[X \geq tE[X]].
\]
Dividing both side by \(tE[X] \), then we arrive at \(P[X \geq tE[X]] \leq \frac{1}{t} \). \(\square \)

Theorem 1.2. (Chebyshev’s inequality, [Dur96]) Let \(X \) be a random variable, then we have
\[
P[|X - E[X]| \geq t\sqrt{\text{Var}[X]}] \leq \frac{1}{t^2}
\]
for any \(t > 0 \).

Proof. Define a new random variable \(Y = (X - E[X])^2 \), thus \(E[Y] = \text{Var}[X] \). By Markov’ inequality, we have
\[
P[Y \geq t^2E[Y]] \leq \frac{1}{t^2}.
\]
Taking square root of \(Y \), then we arrive at \(P[|X - E[X]| \geq t\sqrt{\text{Var}[X]}] \leq \frac{1}{t^2} \). \(\square \)

Corollary 1.3. (One side Chebyshev’s inequality) Let \(X \) be a random variable, then we have
\[
P[X \geq E[X] + t\sqrt{\text{Var}[X]}] \leq \frac{1}{1+t^2}
\]
for any \(t > 0 \).

2 Convergence to Gaussian

A random variable with Gaussian distribution or normal distribution \(N(0,1) \) has probability density function as
\[
p(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.
\]
Inductively, the probability density function of a multivariate Gaussian distribution \(N(0, I_n) \) (\(I_n \) is an \(n \times n \) identity matrix) is defined as

\[
p(x) = \frac{1}{(\sqrt{2\pi})^n} e^{-\frac{\|x\|^2}{2}}.
\]

There are three properties regarding Gaussian random variables:

Property 1. \(p(x) \) is rotationally invariant;

Property 2. \(p(x) \) can be viewed as a product of \(n \) single-variate Gaussian distribution probability density functions;

Property 3. Consider two independent Gaussian random variable \(X_1 \sim N(0, 1), X_2 \sim N(0, 1) \), then \(ax_1 + bx_2 \sim N(0, a^2 + b^2) \).

Theorem 2.1. (Central Limit Theorem, [Dur96]) Let \(X_1, \ldots, X_n \) be i.i.d. random variables whose summation is \(Y_n \) (i.e., \(Y_n = \sum_{i=1}^n X_i \)), then if \(\text{var}[X_1] \in (0, \infty) \), \(\frac{Y_n}{n} \) converges in distribution to \(N(\mathbb{E}[X_1], \frac{1}{n} \text{Var}[X_1]) \).

Theorem 2.2. (Berry-Esseen Theorem, [Ber41]) Let \(X_1, \ldots, X_n \) be independent random variables whose summation is \(Y_n \) (i.e., \(Y_n = \sum_{i=1}^n X_i \)) and \(Z_n \sim N(\mathbb{E}[Y_n], \text{Var}[Y_n]) \), then for any \(t \),

\[
|P(Y_n \leq t) - P(Z_n \leq t)| \leq C \frac{\sum_{i=1}^n \mathbb{E}[|X_i|^3]}{[\text{Var}[Y_n]]^{3/2}},
\]

where \(C \in (0, 1) \) is a constant.

Please note that in [1], we can replace \(\leq \) by \(> \) since \(P(Y_n \leq t) = 1 - P(Y_n > t) \) and \(P(Z_n \leq t) = 1 - P(Z_n > t) \).

Example 2.3. Consider \(X_1, \ldots, X_n \) be i.i.d. random variables where for each \(i \),

\[
X_i = \begin{cases}
1, & \text{with probability } 1/2 \\
-1, & \text{with probability } 1/2
\end{cases}
\]

then we have \(\mathbb{E}[Y_n] = 0, \text{Var}[Y_n] = n \). Thus, [1] yields

\[
|P(Y_n \geq t) - P(Z_n \geq t)| \leq C \frac{\sum_{i=1}^n \mathbb{E}[|X_i|^3]}{[\text{Var}[Y_n]]^{3/2}} := C n^{3/2} = C \frac{n}{n^{1/2}}
\]

which will go to zero if \(n \to \infty \).

2.1 Bounding normal distribution

Let \(Z \sim N(0, 1) \). Let us bound the error function of normal distribution defined as for each \(t > 0 \)

\[
\phi(t) := P(Z > t) = \frac{1}{\sqrt{2\pi}} \int_t^\infty e^{-\frac{x^2}{2}} dx.
\]

The next lemma shows \(\phi(t) \) can be tightly approximated.
Lemma 2.4. $\phi_{LB}(t) \leq \phi(t) \leq \phi_{UB}(t)$ for any $t > 0$, where $\phi_{UB}(t) := \frac{1}{\sqrt{2\pi} t} \left(1 - \frac{1}{t+1}\right)e^{-\frac{t^2}{2}}$, $\phi_{LB}(t) := \frac{1}{\sqrt{2\pi} t} e^{-\frac{t^2}{2}}$.

Proof.

(1) First of all, to upper bound $\phi(t)$, note that for any $x \geq t$, we have $x/t \geq 1$, thus

$$\phi(t) \leq \frac{1}{\sqrt{2\pi}} \int_{t}^{\infty} \frac{x}{t} e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi} t} e^{-\frac{t^2}{2}} = \phi_{UB}(t).$$

(2) Now we claim that $\phi_{LB}(t) = \frac{1}{\sqrt{2\pi} t} \left(1 - \frac{1}{t+1}\right)e^{-\frac{t^2}{2}}$ is a lower bound of $\phi(t)$. To prove it, let us define a new function

$$g(t) = \phi(t) - \phi_{LB}(t) = \frac{1}{\sqrt{2\pi}} \int_{t}^{\infty} e^{-\frac{x^2}{2}} dx - \frac{1}{\sqrt{2\pi} t} \left(1 - \frac{1}{t^2+1}\right) e^{-\frac{t^2}{2}},$$

whose first derivative is

$$g'(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} \left[-1 + \frac{t^2-1}{(t^2+1)^2} + \frac{t^2}{t^2+1}\right] = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} \frac{-2t^2}{(t^2+1)^2} < 0.$$

$g(t)$ is monotone decreasing, thus $g(t) \geq \lim_{x \to \infty} g(x) = 0$, i.e. $\phi(t) \geq \phi_{LB}(t)$.

Thus, $\phi(t) \approx \frac{1}{\sqrt{2\pi} t} e^{-\frac{t^2}{2}}$. □

In Example 2.3, we have

$$P(Y_n \geq t\sqrt{n}) \approx P(Z_n \geq t\sqrt{n}) \leq \frac{1}{t\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$

which would go to zero if $t = \omega(n)$ such that $\lim_{n \to \infty} \omega(n) = \infty$.

3 Routing with minimum congestion

Given a non-directed graph $G(V, E)$, let us define Congestion((i, j)) as number of paths using edge $(i, j) \in E$. Then in this problem, we are trying to find k paths $(s_1, t_1), \ldots, (s_k, t_k)$ with $s_i, t_i \in V$ for all i, such that the largest congestion across all the edges are minimized. It turns out that such problem is NP-hard even with $k = 2$.

We now consider relaxing the path into flow (i.e., we are sending one unit of flow from s_i to t_i for each i), which is polynomially solvable. The following example illustrates how the relaxation works.

Example 3.1. Consider a graph with four nodes (s_1, s_2, t_1, t_2) and four edges $(s_1, t_2), (t_1, t_2), (s_2, t_1), (s_1, s_2)$ (see Figure 1). In this example, if we solve the original problem the optimal value is 2, because the paths of (s_1, t_1) and (s_2, t_2) share at least one edge. However, if we solve the relaxed one, the optimal value is 1 since for (s_1, t_1) flow, we can send half flow through $s_1 - t_2 - t_1$ and another half flow through $s_1 - s_2 - t_1$, and the same strategy applies to (s_2, t_2) flow. ♦
Now, for each \(l \in \{1, \ldots, k\} \), let us define a set of flow variables \(\{x^l_{ij}\}_{(i,j) \in E} \) which forms a flow with value 1 between \(s_l \) and \(t_l \). Clearly, Congestion((i, j)) can be expressed as a function of \(\{x^l_{ij}\}_{(i,j) \in E} \), i.e., Congestion((i, j)) = \(\sum_{l=1}^{k} x^l_{ij} \). Denote \(\alpha \) to be the maximum congestion across the edges. Thus, our relaxed problem is formulated as follows:

\[
\begin{align*}
\min \quad & \alpha \\
\text{s.t.} \quad & \sum_{l=1}^{k} x^l_{ij} \leq \alpha, \forall (i, j) \in E \\
& \{x^l_{ij}\}_{(i,j) \in E} \text{ forms a flow with value 1 between } s_l \text{ and } t_l \\
& 0 \leq x^l_{ij} \leq 1, \forall (i, j) \in E, l \in l \in \{1, \ldots, k\}
\end{align*}
\]

which can be solved as a linear program (LP). Let \(\{x^*_{ij}\}_{(i,j) \in E} \), \(\alpha^* \) be the optimal solution.

Now we are ready to prove main result in this section.

Theorem 3.2. With probability at least \(\frac{1}{2} \), there exists a routing in \(G(V, E) \) whose maximum congestion is no larger than \(\max((2e - 1)\alpha^*, 2 \ln n) \leq (2e - 1)\alpha^* + 2 \ln n \).

Proof.

(1) First of all, for each \(l \in \{1, \ldots, k\} \), we can decompose the optimal flow between \(s_l \) and \(t_l \) by path. This can be done iteratively: at iteration \(\tau \), suppose we find a path \(P_\tau(s_l, t_l) \) from \(s_l \) to \(t_l \), let \(f_\tau \) be the minimum edge flow on this path, then reduce the flow of each edge on this path by \(f_\tau \); go to next iteration until we cannot find any path with positive flow. This procedure takes at most \(|E| \) iterations as at each iteration at least one edge is removed. Hence, after flow decomposition, we arrive at the following equality

\[
\text{flow}(s_l, t_l) = \sum_{\tau} f^\tau_{ij} P_\tau(s_l, t_l), \forall l \in \{1, \ldots, k\}
\]

and \(\sum_{\tau} f^\tau_{ij} = 1 \) with \(f^\tau_{ij} \in [0, 1] \) for all \(\tau \). We see that for each \(l \in \{1, \ldots, k\} \), \(\{f^\tau_{ij}\}_\tau \) can be viewed as a probability distribution of paths \(\{P_\tau(s_l, t_l)\}_\tau \). This inspires us to define independent random variables \(\{Y^l_i\}_i \) for each edge \((i, j)\) as

\[
Y^l_i = \begin{cases}
1, & \text{if } (i, j) \text{ is used for } (s_l, t_l) \text{ with probability } p_l \\
0, & \text{otherwise}
\end{cases}
\]

Then, Congestion((i, j)) := \(Y = \sum_{l=1}^{k} Y^l_i \) and let

\[
\mu := E[Y] = \sum_{l=1}^{k} E[Y^l_i] = \sum_{l=1}^{k} p_l := \sum_{l=1}^{k} x^*_{ij} \leq \alpha^*.
\]
(2) Now we would like to bound Y. Given $\delta, t > 0$, then we have

$$P[Y \geq (1 + \delta)\mu] = P[e^{tY} \geq e^{(1 + \delta)\mu}]$$

(ex is monotone increasing)

$$\leq \frac{E[e^{tY}]}{e^{(1 + \delta)\mu}}$$

(Markov’s inequality)

$$= \frac{E[e^{t\sum_{i=1}^{k} Y_i}]}{e^{(1 + \delta)\mu}}$$

($Y = \sum_{i=1}^{k} Y_i$)

$$= \prod_{i=1}^{k} E[e^{tY_i}]/e^{(1 + \delta)\mu}$$

(indipendence of $\{Y_i\}$)

$$\leq \prod_{i=1}^{k} \left(1 - p_i + p_i e^t\right) e^{t\mu} = \prod_{i=1}^{k} \left[1 + p_i(e^t - 1)\right]/e^{(1 + \delta)\mu}$$

(definition of $\{Y_i\}$)

$$\leq \prod_{i=1}^{k} p_i(e^t - 1)$$

($\mu = \sum_{i=1}^{k} p_i$).

Note that by minimizing $e^t - 1 - t(1 + \delta)$ over $t > 0$, the minimizer is $t^* := \ln(1 + \delta)$. Substitute $t = \ln(1 + \delta)$, the above inequality yields

$$P[Y \geq (1 + \delta)\mu] \leq \left[\frac{e^{\ln(1 + \delta) - 1}}{2^{(1 + \delta)/\mu}}\right]\mu$$

($t = \ln(1 + \delta)$)

$$\leq \frac{1}{2^{-(1 + \delta)/\mu}}$$

(if $\delta \geq 2e - 1$)

$$\leq \frac{1}{n^2}$$

(if $(1 + \delta)\mu \geq 2 \ln n$).

As there are at most n^2 edges, thus according to union bound, the probability that the maximum congestion is no larger than $\max((2e - 1)\alpha^*, 2 \ln n) \leq (2e - 1)\alpha^* + 2 \ln n$ is at least $\frac{1}{2}$.

This example arises an important concentration bound.

Theorem 3.3. (Chernoff bound, [Che52]) Let $X_1, \ldots, X_n \in [0, 1]$ be independent random variables, and $X := \sum_{i=1}^{n} X_i$, then we have $P[X > (1 + \delta)E[X]] \leq e^{-\frac{\delta^2}{2}E[X]}$ for any $\delta > 0$.

Moreover, if $\delta \in (0, 1)$, we have $P[X < (1 - \delta)E[X]] \leq e^{-\frac{\delta^2}{2}E[X]}$

A more general inequality is

Theorem 3.4. (Hoeffding inequality, [Hoe63]) Let X_1, \ldots, X_n be independent random variables with $X_i \in [a_i, b_i]$, and $X := \sum_{i=1}^{n} X_i$, then we have $P[X > E[X] + t] \leq e^{-\frac{2t^2}{\sum_{i=1}^{n}(a_i - b_i)^2}}$ and $P[X < E[X] - t] \leq e^{-\frac{2t^2}{\sum_{i=1}^{n}(a_i - b_i)^2}}$ for any $t > 0$.

5
4 Johnson-Lindenstrauss Lemma

In this section, let us consider m vectors $u_1, \ldots, u_m \in \mathbb{R}^n$ and we would like to demonstrate that for any $\epsilon \in (0, 1)$, there exists an integer k and $v_1, \ldots, v_m \in \mathbb{R}^k$ such that $(1 - \epsilon)||u_i - u_j||_2^2 \leq ||v_i - v_j||_2^2 \leq (1 + \epsilon)||u_i - u_j||_2^2$ for all i, j. Johnson-Lindenstrauss Lemma tells us that $k = O(\log(m)/\epsilon^2)$ suffices.

First of all, let us define random projection as follows. Let $R \in \mathbb{R}^{n \times k}$ be an entry-wise independent Gaussian random matrix, where $R_{ij} \sim N(0, 1)$, then the linear projection of u_i is defined as $v_i = \frac{1}{\sqrt{k}}R^7 u_i$ for each i. Now we are ready to show Johnson-Lindenstrauss Lemma.

Theorem 4.1. (*Johnson-Lindenstrauss Lemma, [JL84]*) Given $\epsilon \in (0, 1)$, let $u \in \mathbb{R}^n$ and $v = \frac{1}{\sqrt{k}}R^7 u$, then

$$P[||u||_2^2 - ||v||_2^2 > \epsilon||u||_2^2] \leq 2e^{-\frac{1}{8}(\epsilon^2 - 2\epsilon^3/3)}.$$ \hspace{1cm} (2)

In particular, we choose $k = O(\log(m)/\epsilon^2)$, then with probability at least $\frac{9}{10}, (1 - \epsilon)||u_i - u_j||_2^2 \leq ||v_i - v_j||_2^2 \leq (1 + \epsilon)||u_i - u_j||_2^2$ for all i, j.

Proof. First of, if $u = 0$, then (2) holds trivially. Now we assume that $u \neq 0$, thus without loss of generality, we can normalize it as $||u||_2 = 1$.

Note that

$$k||v||_2^2 = \sum_{l=1}^k (R_{il}u)^2 = \sum_{l=1}^k Y_i^2 = Y.$$ \hspace{1cm}

We also have

$$E[Y] = kE[||v||_2^2] = E[u^T RR^T u] = u^T E[RR^T]u = k$$

where the last equality is due to $||u||_2^2 = 1$ and

$$E[RR^T]_{ij} = \begin{cases} \sum_{l=1}^k E[R_{il}R_{jl}] = \sum_{l=1}^k E[R_{il}^2] = k, & \text{if } i = j \\ \sum_{l=1}^k E[R_{il}R_{jl}] = \sum_{l=1}^k E[R_{il}E[R_{jl}]] = 0, & \text{otherwise} \end{cases}.$$ \hspace{1cm}

Thus, (2) is equivalent to show

$$P[|Y - E[Y]| > \epsilon E[Y]] \leq 2e^{-\frac{1}{8}(\epsilon^2 - 2\epsilon^3/3)}.$$ \hspace{1cm} (3)

Indeed, if (3) holds, then choose k such that $2e^{(-\epsilon^2 + \epsilon^3/3)k} < \frac{1}{10m^2}$, i.e. $k = O(\log(m)/\epsilon^2)$, and according to union bound, the probability that $(1 - \epsilon)||u_i - u_j||_2^2 \leq ||v_i - v_j||_2^2 \leq (1 + \epsilon)||u_i - u_j||_2^2$ for all i, j is at least $\frac{9}{10}$.

We will prove (3) in the next lemma. \hfill \Box

Lemma 4.2. Suppose Y_1, \ldots, Y_k are i.i.d. $N(0, 1)$ random variables and $Y := \sum_{l=1}^k Y_l^2$, then (3) holds.
Proof. Note that

\[P[|Y - E[Y]| > \epsilon E[Y]] \leq P[Y > (1 + \epsilon)E[Y]] + P[Y < (1 - \epsilon)E[Y]]. \]

We will first bound \(P[Y > (1 + \epsilon)E[Y]] \). Indeed, for any \(t > 0 \),

\[P[Y > (1 + \epsilon)E[Y]] = P[e^{tY} > e^{t(1+\epsilon)k}] \quad (E[Y] = k) \]

\[\leq \frac{E[e^{tY}]}{e^{t(1+\epsilon)k}} \quad (\text{Markov's inequality}) \]

\[= \prod_{l=1}^{k} \frac{E[e^{tY^2}]}{e^{t(1+\epsilon)k}} \quad (Y = \sum_{l=1}^{k} Y^2_l \text{ and by independence of } \{Y_i\}) \]

\[= \left[\frac{1}{\sqrt{1 - 2t e^{t(1+\epsilon)}}} \right]^k \quad (Y_i \sim N(0,1) \text{ and } E[e^{tY^2}] = \frac{1}{\sqrt{1 - 2t}} \text{ by Claim 4.3}) \]

Claim 4.3. Let \(X \sim N(0,1) \), then \(E[e^{tX^2}] = \frac{1}{\sqrt{1 - 2t}} \) for any \(t \in (0, \frac{1}{2}) \).

Proof. It can be shown by direct calculation

\[E[e^{tX^2}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx^2} e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{1 - 2t}} \left[\frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{1 - 2t}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{1 - 2t}} dx \right] \]

\[= \frac{1}{\sqrt{1 - 2t}} \]

where the last inequality is because \(\frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{1 - 2t}} e^{-\frac{x^2}{1 - 2t}} \) is the density function of Gaussian random variable \(N(0, \frac{1}{1 - 2t}) \). \(\square \)

We would like to maximize \((1 - 2t)e^{2t(1+\epsilon)}\) over \(t > 0 \), whose maximizer is \(t^* = \frac{\epsilon}{2(1+\epsilon)} \). Thus, \(P[Y > (1 + \epsilon)E[Y]] \) can be further bounded as

\[P[Y > (1 + \epsilon)E[Y]] \leq \left[\frac{1}{(1 - 2t)e^{2t(1+\epsilon)}} \right]^\frac{1}{2} = \left[\frac{1 + \epsilon}{e^\epsilon} \right]^\frac{1}{2} \quad (\text{set } t = \frac{\epsilon}{2(1+\epsilon)}) \]

\[\leq e^{\left(-\frac{\epsilon}{2} + \frac{\epsilon^2}{2} \right)} \quad (\text{set } 1 + \epsilon \leq e^{-\frac{\epsilon^2}{2} + \frac{\epsilon^2}{2}}, \forall \epsilon \in (0,1)). \]

By the similar reasoning, we can also bound

\[P[Y < (1 - \epsilon)E[Y]] \leq e^{(-\epsilon^2 + 2\epsilon^3/3)} \]

Hence, (3) holds. \(\square \)
References

